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Abstract. We study a general type of equation of motion for two point particles in Rat 
space-time, involving radiation reaction terms and previous states of motion of the particles 
at retarded and multiply retarded times: the type includes the Lorentz-Dirac electromag- 
netic equation and approximate gravitational equations, and may be applicable to approxi- 
mations to other nonlinear theories. Existence and uniqueness are proved subject to given 
asymptotic conditions in the infinite past and regularity conditions at all times, provided 
the coupling constant is sufficiently small (i.e. small-angle scattering). 

1. Introduction 

In recent years, radiation reaction calculations both in general relativity (Ehlers et a1 
1975, Rosenblum 1978,1981, Kates 1980) and in gauge theories of strongly interacting 
particles (Drechsler 1980, Trautman 1981) have become very important. In general 
relativity, theoretical calculations of the period change of a binary system due to 
radiation reaction can be compared with Taylor’s observations of the binary pulsar 
(PSR 1913 + 16) to provide an excellent test of the theory. In strong interaction physics, 
the results of radiation reaction calculations for classical SU(3) Yang-Mills fields may 
be of help for the problem of quark confinement (Drechsler and Rosenblum 1981). 

Since both Einstein’s equation and the Yang-Mills equation are nonlinear, approxi- 
mation methods must be used to obtain approximate solutions which can be related 
to the sources. In Lorentz-covariant approximation methods, space and time are kept 
on the same footing in the various iterations of the nonlinear field equation. This 
approximation method is obviously very good for studying radiation problems. When 
the nonlinear field equations for a two body problem are solved approximately and 
the resulting fields are placed in the law of motion, it is found that the equations of 
motion for a particle are not only functionals of the other particle’s mechanical 
variables evaluated at the retarded time, but can in addition be functionals of the 
particle’s own variables evaluated at the retarded time of the retarded time (Rosenblum 
1981, Bertotti and Plebanski 1960). The effect follows from the iteration of a nonlinear 
field equation. 

Since the resulting force law in general relativity has been solved approximately 
in the case of small-angle scattering (Rosenblum 1978), it is of great importance to 
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know whether or not the approximate force law which contains multiply retarded 
terms has solutions which exist and are unique. 

To this end we consider two particles moving in Minkowski space-time under the 
influence of retarded or multiply retarded interactions with radiation reaction terms. 
Existence and uniqueness theorems are proved in outline for small-angle scattering 
with initial conditions prescribed in the infinite past and a condition in the infinite 
future to preclude runaway solutions when the formal damping term is positive. 

The next section, 2, describes the equations to be considered with their associated 
boundary conditions, after which the main theorem is stated. In 0 3 we briefly review 
the ideas of the proof. This is based in part on the techniques of Flume (1971), who 
proved existence for the symmetrical electrodynamic interaction. Finally, in 0 4 we 
outline the proof, omitting purely routine calculations that exactly parallel parts of 
Flume’s work. 

2. Specification of the problem 

An important feature of the equations of motion to be considered is the occurrence 
of multiply retarded times. If x 1 ( 7 )  = ( x 1 ( 7 ) ’ ,  . . . , x1(7I3)  defines the world line of 
particle 1 as a function of parameter 7, and similarly for x 2 ( 7 )  in the case of particle 
2, then these world lines determine a retardation function R l z  by the condition that 
x 1 ( 7 )  - x2 (RlZ(T) )  is null and future pointing: R12(7) is the retarded parameter for 
particle 2 corresponding to parameter T for particle 1. R z l  is defined similarly. By 
composition we can define multiple retardation functions R Z I  Q R12, Rlz  0 Rzl 0 R I *  
and so on. The general equations of motion to be considered are of the form 

together with an equation for xz derived by interchanging suffixes 1 and 2. Multiple 
retardations may be involved for all the variables indicated, up to a level of N 
retardations. The tA are constants with the dimensions of length (e.g. fA = e /mA for 
electromagnetism or GmA for gravitation). The velocity of light, c, is 1 and time is 
measured in length units. For electromagnetism t ~ ,  which plays the role of a radiative 
damping time scale, is positive, while for gravitation it is negative. (This does not 
mean that gravitational motion is anti-damped, because this term is cancelled out by 
higher-order terms in the fast-motion procedure (Smith and Havas 1965), as must 
occur because of the absence of gravitational dipole radiation.) We shall describe the 
case fA > 0, indicating modifications necessary for tA < 0. 

From the point of view of existence and uniqueness theorems, equations involving 
multiple retardations are no more difficult to handle than those involving single 
retardations, provided that the dependence off on the velocities at multiply retarded 
times is of a particular form. More specifically, we require 

Z 

f A  ‘ f i  +f”A ( A  = 1,2)  

where f; falls off rapidly with increasing separation of the particles (as specified by 
(4) below) and fi has the same form as the leading terms in the electromagnetic 
interaction (the ‘Coulomb part’), namely 

f? = ~ ~ ~ 1 / P 1 ~ 7 ~ 2 ~ ~ z ~ ~ 1 2 ~ ~ ~ ~ r ~ ~ 1 ~ 7 ~ ” 1 ~ 1  (7) (2) 
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(and similarly with 1 and 2 interchanged) where the ZA are constants (determined 
by the charges, in electromagnetism) and 

P I ( T )  = - ~ ~ ( R ~ z ( ~ ) ) ~ ( x z ( R ~ ~ ( T ) )  -x1 (7 ) I r r ,  

~ i ( 7 ) ”  = ~ 1 ( 7 ) - ~ ( ~ 2 ( R 1 2 ( 7 ) )  - x i ( ~ ) ) ”  --&(Riz(~))” 

(and with 1 and 2 interchanged). 
We can use f i  to write down an approximation for the motion in the remote past. 

First, apply a Lorentz transformation so that the asymptotic initial four-velocities of 
the particles are 

U1 = (U0, Ul, 0,O) 

U2 = (U0, - v i ,  0,O) 
(7 + -00). 

A ‘zero-order’ solution is then X A ( T )  = bA + TVA. If we insert this in the right-hand 
side of the equations of motion with f: omitted, and discard lower-order terms, we 
derive the functions 

where U T  = (U’, -U’, O,O) ,  U: = ( - - U ’ ,  -U’, 0,O). 
We shall show the existence of solutions that approximate eA in the sense of (iii) 

in the following set of boundary conditions, which we impose on the problem 
throughout. 

( i )  Each x A ( T )  is defined for all -CO < T < W. 
(ii) For some K>O and y > 0 ,  ~ X A ( T ) ~ < K ( ~ + T ) - ~  for all 7 (where I I is the 

(iii) For some K’>O and a, O<a < 1, I X A ( T ) - ~ A ( T ) ~ < K ( ~ - ? ) - ( ~ + ~ ) ~ ~ ~  all T < O .  
(iv) For some K”>0, 1pA(7)1>K’‘ for all 7, where pA(7 )  (defined above) is the 

retarded spatial separation of the particles in the rest frame of A at proper time 7. 

The motivation for conditions (ii)-(iv) is as follows. Condition (iii) formulates the 
asymptotic initial conditions, in terms of the approach of the trajectories to functions 
5 with specified velocities and impact parameter in the infinite past. Condition (iv) 
bounds the separation of the particles from below and thereby restricts attention to 
small-angle scattering. Condition (ii) seems to be required, in addition to (iv), in order 
to ensure that the final state is ‘free’ (a genuine scattering), and hence to define in a 
suitable way the convergence of an iteration scheme throughout the whole of the 
trajectories. For fA > 0, (ii) can be viewed as a means of excluding ‘run-away’ solutions. 
Note that Flume (1971) uses conditions at a finite time rather than asymptotic 
conditions. 

In order to state the theorem, we introduce the following notation for the arguments 
of the functions fA in equation ( 1 ) .  Write 

Euclidean norm). 

(0) ( 1 1  (2) 
X A  X A ,  XA XA, X A  = .fA, 

etc, 
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Set also 

CL = C L ( T ) ~ ~ ~ ~ ( ~ ~ ( T ) , P Z ~ R I Z ( T ) , P I ~ R Z I  o R I Z ( 7 )  etc, 

~ ~ ( 7 1 ,  P I  0 R z I ( ~ ) ,  P Z  0 R I Z  0 R z ~ ,  etcl, 

a = a (7) = max/xAql, 
I Z )  ( 1 )  

K = K ( T )  = maxlxAqI. 
Aq 4 

We write also tA = M A E  (thinking of E as a universal constant) so as to be able to let 
E + 0 in the statement of the theorem. 

( p  = 0,1,2; v = 0 , .  . . , 3 ;  q = 0,1 , .  . . , N )  (4b)  

for some K,, Kip’ ,  functions of K .  Then, for any constants K,  K’, K“, if E is sufficiently 
small there exists a unique solution to (1) satisfying the boundary conditions (i)-(iv) 
above. 

I--/ af s K:p) (app- z+/2 -3 )  

a x Aq 

Remarks 
(1) The conditions are all satisfied for electrodynamics, and on physical grounds 

are likely to be satisfied for most other reasonable interactions. 
(2) In practice E will be a fixed coupling constant. But the condition ‘ E  small’ is 

equivalent (on dimensional grounds) to ‘bA and K (the impact parameters) large’, i.e. 
to small-angle scattering. 

(3) Note finally that we are not assuming that T is proper time. In the case of 
electrodynamics 7 can be shown to be proper time for any solution of (1) satisfying 
the boundary conditions with uA normalised vectors. 

3. Ideas of the proof 

We take as our basic variables not the X A  but the accelerations y A  = .C.’A. Then xA is 
reconstructed from XA by the identity 

J-w J-w 

(which depends on the validity of asymptotic condition (iii)). 

equations as 
As in most treatments of the problem, we use condition (i i )  to rewrite the 

(For (A < 0 the integral is I:,.) Then the proof is essentially a formalisation of the 
obvious iteration scheme based on ( 5 )  and (6) .  One starts with a first approximation 
x;’ = $A, then computes x:’ using ( 5 )  and inserts these in the right-hand side of (6 ) .  
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- (1'  - - (2'  Let us call the value of the functional defined by this process r A [ i ! " ,  x 2  ] - x A  . 
Thus the iteration scheme is i?' = r A [ x p - l ' ,  .?::"-"I. Equation ( 6 ) ,  in this notation, 
is 

i .4=rA[k1, i2]  

i.e. i = (il,  X2) is a fixed point of the mapping r: x - (Tl(f), r2(x)). Such a point will 
exist if the sequence x'"' converges (with respect to a suitable topology on the space 
of all x satisfying asymptotic conditions (i)-(iv)) to a point in the domain of I'. 

In Flume's treatment this space is given a compact-open topology by using a set 
of half-norms defined on a compact subspace of the proper-time-parameter space R. 
In effect, he calculates the result of applying r in terms of these half-norms and then 
applies the Tychonoff fixed-point theorem to deduce the existence of a fixed point 
for r. The above iteration is not explicitly used, but it is implicitly present through 
the proof of the Tychonoff theorem. We take over, more or less, his estimates for 
the effect of r (extending them to non-symmetric interactions and multiple retarda- 
tions), but apply them in the context of a topology on a function space having the metric 

d(Y, Y ' )  = IIY 1 - Y ' I l + l l Y Z  - Y ;I1 
where /I 11, a norm adapted to the asymptotic conditions, is 

for R4-valued functions y on R having the norm defined, 1 * 1 being the Euclidean norm 
on [ w ~ .  

The basis of the proof, which shows both that the iteration scheme converges to 
a fixed point and that this point is unique, is the demonstration that I' is a contraction 
mapping, for small enough E ,  provided it is restricted to the set 

X,A,~ := { Y :  A s ( y ) < A ,  d(y ,  &GI.> 

with r sufficiently small. Here A, is a Lipshitz parameter defined by 

Ash) := IILipdx, *)ll, LiP,(Y, 7) := SUPlY ( U )  - Y (U" 4, 
where the supremum is taken over all U, U' with U # uf ranging over [T - s, CO) for 
7>0 and (-CO, T + S ]  for 7<0.  

4. Sketch of proof 

4.1, Existence 

We need to show that, for small enough E ,  there exists a K < 1 such that 

d ( r ( y ( " ) ,  r ( y" ' ) )<  Kd(y"',  y"') (8) 
for all y"', y"' in Xs,h,r, and that I' maps this set into itself. In the following, if q is 
any quantity defined in terms of the y ,  then we set q'A' := q(y'A')  ( A  = 1,2) ,  Sq := 

The condition d(y ,  p )  S r implies that lyz' - & ) I  < v for some Y tending to 0 with 
q"' - dS) .  
r. Thus for small enough r we have 

Idxi/dtl E / x a / x n l  < VI 
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for some V1 < 1 (a = 1 ,2 ,3 )  and 

/x:\ < v2. 

(Note that T is not necessarily proper time, and x@ cannot a priori be assumed 
time-like: see remark 3, § 2.) 

From this a simple geometrical argument gives 

for Cl > 1, 0 < C3 < 1 and C2 >0, depending on vi and the initial conditions. By 
iteration we obtain relations of the form 

&1(7) := RlzoR21..  . (7)3kA*T-B (7 3 0 )  (9) 

for k retardations. Also from geometry, one can show that 

where T ’  ranges over an interval [CYT - y, OT + y ]  for constants a, p, y depending on 
the V,  and initial conditions. The proof of this is again by first proving a relation with 
k = 1 and then iterating. This is the only point at which the multiplicity of the iterations 
comes in. 

Now let f A ) :  R+ R4 (A = 1,2)  be any two functions. It is clear that 

/a(f kRA)(T)/ 
Ifl)(kRz) (7) )  -f”’(kR 2) ( T ) ) \  + If2’(kRz’ (7))  -f2’(kR 2) (7))l 

I(af)(kRz)(T))] + (akRA) (T )  Lips(f2’, a’7) (11) 

for constants s, CY’ depending on a, p, y. Moreover, the definition of the norm (7) gives 

We now use 
XA and XA in 

Note that C17 and Cls depend on A through the Lip, in (11) (while for the lower 
derivatives, x and x, the Lipshitz constant is given by the sup of f and x respectively). 
This is why we need a restriction on the Lipshitz constant of 2, through A.  
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We now insert these variations into the function f of ( l ) ,  estimating the result by 
condition (46 ) .  We get 

where (9) has been used repeatedly to relate estimates in terms of ~ R ( T )  to those in 
terms of T. 

Finally we insert this in the integral (6) to verify (8). To check that r maps Xs,A,r 
into itself we need to examine the A and r conditions on r(x). For A, the Lipshitz 
condition, write (6) (with y = i) as 

r m  

from the relations 

For the r condition, note that 5 has been chosen so that I/&- r(t)l/+ 0 as E + 0 
(i.e. 6 is ‘approximately’ a fixed point of r already). Then the contraction property 
(8) shows that, for small enough E ,  Xs,m,r is mapped into Xs,A,r. 

4.2. Uniqueness 

Any fixed point of r must be unique in the domain where r is contractive. So we 
simply have to show that any fixed point satisfying the boundary conditions is in fact 
in Xs,A,r. Since we have just noted that r maps Xs,m,r to Xs,A,r for small enough E and 
r, we need only verify that d ( y ,  8) < r for solutions satisfying the conditions, i.e. that 
the conditions imply that 

Such a TO exists by virtue of condition (iii). If TO < CO, then we must have 

IXA ( 7 0 )  - i A  ( 7 0 )  I = II t A  ( 7 0 )  I 
for either A = 1 or A = 2. But for a fixed point it is easily seen that, for small enough 
E ,  this is impossible by virtue of ( 4 a ) .  Thus (14 )  holds with T~ = CO. 

A further application of ( 4 a )  now gives ~ X A ( T ) - & ( T ) ~  <constant ( 1  + T ) - ’ - ” ;  and 
another repetition yields (13) .  
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